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A brief review of P. Ya. Kochina's studies, namely, her investigations of free-boundary problems for harmonic functions, is 
presented. Her ideas have had implications for many areas of quantitative science, including materials science, the environment, 
medicine and finance. Within mathematics, they have stimulated many new developments in the areas of complex analysis, 
asymptotic analysis, and partial differential equations with free boundaries. © 2002 Elsevier Science Ltd. All rights reserved. 

This paper does scant justice to the multi-faceted nature of Kochina's work on free-boundary problems. 
We have tried to highlight some of the principal mathematical innovations that have been stimulated 
by her research and to indicate the most glaring deficiencies in our current knowledge. The phenomenal 
growth of interest in free-boundary problems of all kinds guarantees that Kochina's seminal ideas will 
affect the thinking of mathematicians and scientists for many decades to come. 

1. A H E L E - S H A W  C E L L  

One year before Kochina's birth, Hele-Shaw [1] first described his "cell", which was an experimental 
device for studying fluid flow by pumping a viscous liquid into the narrow gap between two closely- 
spaced glass plates. Using dye-lines, he was able to observe the flow patterns generated when the flow 
was impeded by various kinds of obstacles, such as aerofoil sections, placed between the plates. Thus, 
he was able to verify, with great accuracy, Stokes' prediction (in an appendix to Hele-Shaw's paper) 
that, assuming the Reynolds number is not too large, the velocity u in the plane of this cell is irrotational. 
The pressure plays the role of a potential which satisfies homogeneous Neumann data on the obstacle, 
so at appropriate scale 

u = -~Tp, Ap = 0 in the fluid (1.1) 

dp/dn = 0 on the obstacle (1.2) 

(It was only in 1968 [2] that Stokes' analysis was modified to take account of the three-dimensional 
flow that is necessary to satisfy the no-slip condition on the obstacle.) 

The Hele-Shaw cell became famous as an analogue computer for Laplace's equation, and thus it was 
particularly useful for visualizing two-dimensional flows in porous media, assuming they are slow enough 
to be governed by Darcy's law. However, for the next 50 years, this was thought (at least by many Western 
scientists) to be the only scientific value of the Hele-Shaw cell. 

2. KOCHINA'S  F R E E - B O U N D A R Y  MODELS IN SEEPAGE 

In the 1930s and 1940s, Kochina realized that many groundwater flows, especially dam problems, led 
to models in which the saturated region must be separated from the dry region by a free boundary F, 
which has to be determined as part of the problem [3, 4]. She, along with Muskat [5] and Galin [6], 
argued that at such an interface the pressure should be approximately constant and equal to that in 
the dry region, and that the law of conservation of~mass requires that the liquid velocity normal to be 
F proportional to vn, the normal velocity of F. 
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Thus, without loss of generality and why y in the vertical direction, 

u = - V ( p + p g y ) ,  Ap = 0 in the fluid (2.1) 

p = O, --c)(p + pgy)/c)n = vn on F (2.2) 

(Model (2.1), (2.2) is now often referred to as the "Hele-Shaw free-boundary problem", despite the 
inappropriateness of this name.) 

This realization immediately cast the Hele-Shaw cell in a new role. It mean that, as well as in its 
traditional use as an analogue computer for linear potential problems, a Hele-Shaw cell with cavities 
enables the solutions of problem (2.1), (2.2) to be readily visualized. Indeed, Kochina [3, p. 243] was 
quickly able to obtain close agreement between some of her ingenious exact solutions of problem (2.1), 
(2.2) and the flows she observed in her cell. 

Kochina's discovery that such non-linear problems could be simulated so easily was a revelation in 
itself, but there were to be far more dramatic consequences. 

3. THE A P P L I C A B I L I T Y  OF THE H E L E - S H A W  M O D E L  IN 
M O D E R N  SCIENCE AND T E C H N O L O G Y  

The list of scientific problems whose mathematical models can be reduced to (2.1), (2.2) is increasing 
year by year. Here we will only cited some of those that have appeared since the groundwater model 
was first suggested: the list is intended only to give a rough idea of the scope of the research that is 
encompassed. 

First and foremost is the dramatic increase in new "Stefan" models that have been proposed. The 
original Stefan model concerned the albedo, but now it appears in many simulations in materials science, 
chemistry and biology. The prototype is for the melting or freezing of a material initially at its phase- 
change temperature, under the assumption that heat flows purely by conduction and that there is a 
prescribed latent heat. Then, as long as the specific heat is negligible, p in problem (2.1), (2.2) in the 
zero-gravity limit (g = 0) can be interpreted as the temperature (or concentration) in the new phase, 
with a melting point equal to zero, and a dimensionless latent heat (or concentration jump) equal to 
unity. This model is the basis for the scientific study of processes ranging from steel making [7] to 
semiconductor fabrication [8], or from food freezing to laser welding [9]. On the other  hand, the 
identification ofp  as the electric potential leads to models for electrochemical machining or forming 
[10], while tumour necrosis can be modelled by identifyingp as the concentration of a biological agent, 
again with the incorporation of diffusion, as in the Stefan problem [11]. It is noteworthy that in many 
of the "Stefan" generalizations of problem (2.1), (2.2), the dimensionless parameter that compares 
temporal rates of change in the bulk with the rate of change of F is small, so that the model is a relevant 
approximation. 

In a completely different vein, it is easy to verify that, if we define oJ(x,y) to be the time at which the 
free-boundary F reaches the point (x,y)  in the plane of a Hele-Shaw cell, modelled by (2.1), (2.2) with 
g = 0, then the function 

t 

u(x,y , t )  = S p(x ,y ,z )d~ (3.1) 

satisfies the equation hu = 1 and thus describes the transverse displacement of a membrane under a 
uniform pressure. Moreover, the free-boundary conditions (2.2) imply that u = Ou/On = 0 on F. Thus 
in contact mechanics the function u can be interpreted as the displacement of an inflated membrane 
pressed against a smooth rigid plane, and by varying the time we obtain a one-parameter family of such 
static contact problems. 

Note that, if diffusion is again included, this problem arises in the theory of the optimum times for 
exercising financial options, where p is related to the value of the option and the space variables are 
the values of the underlying stocks [12]. 

It is ironic that when the mapping p ~ u, which is commonly called a "Baiocchi transformation", 
was suggested in the 1960s in one of the first applications of the theory of variational inequalities (see 
[13]), it was used to prove the existence and uniqueness of the solution of the very same dam problem 
for which Kochina had obtained the explicit classical solution 20 years earlier. 

This list could be extended almost indefinitely, but here we must confine ourselves to noting that 
there is also a long list of intensively-studied mathematical models which are not free-boundary problems 
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but of which (2.1), (2.2) is a singular limit, as indicated below. Hence, it behoves the many researchers 
who study the following models to be aware of Kochina's ideas. Some of these models have more physical 
relevance than others, but they have all stimulated exciting new investigations in the theory of partial 
differential equations. These models are: 

The AUen-Cahn equation 

The Cahn-Hilliard equation 

~U "C'-~=E2AU+U--U 3 as e , x~O 

~U "¢~t =-A(e2hu+u-u 3) as e , x ~ 0  

The phase-field equations 

3T ~u = fi~u=e2Au+u-u3 +aT, "C'~+"~ AT as e,x~O 
Ot 

The porous medium (seepage) equation 

bu 
O_--:-=V.(umVu) as m~*~, x ~ 0  

dt 

(The last equation has even been proposed as a model for the spread of galactic civilization [14]. 
However, it is often used in the theory of various kinds of groundwater flow, as was well known to 
Kochina.) 

In each case, all the parameters are constants and limits have to be taken appropriately (see [15] for 
the first three and [16] for the last). 

Again, this list could be extended considerably, but we must now comment on what is the most 
fundamental theoretical aspect of problem (2.1), (2.2). 

4. I L L - P O S E D N E S S  AND W E L L - P O S E D N E S S  

Kochina's famous exact solution of problem (2.1), (2.2), to be discussed further in Section 5, highlighted 
the "blow-up" properties of the solution in the unstable or suction cases, when the area inside the 
boundary F, occupied by the fluid, is decreasing with time (i.e fluid is being absorbed). Conversely, 
Kochina's solutions all gain smoothness when the region occupied by the fluid expands. This is in accord 
with Hill's linear stability analysis [17]. In 1958 Saffman and Taylor [18] encountered one of the most 
dramatic illustrations of this irreversibility of motion. By extracting the fluid from one end of a cell in 
the form of a long, parallel-sided channel, they found that the "finger" of air that was eventually sucked 
towards the end of the channel occupied approximately half of the channel width. However, their 
travelling wave analysis of problem (2.1), (2.2), which used a simplification of Kochina's conformal 
mapping procedure, led to a one-parameter family of fingers and the pattern-selection problem thus 
posed has challenged engineers, mathematicians and physicists ever since. Again we encounter a situation 
where Kochina has stimulated an area of research now addressed in hundreds of papers and books. 

Indeed, the "Saffman-Taylor instability", which is the phrase now commonly used to described 
the ill-posedness of problem (2.1), (2.2), when the region occupied by the fluid shrinks, has prompted 
many ingenious studies of regularized versions of problem (2.1), (2.2) whose objective is to understand 
phenomena such as dendritic growth and mushy regions. The morphologies that occur in such pheno- 
mena are subject to an unpredictability akin to that in turbulence, and problem (2.1), (2.2) with all its 
mathematical structure, is at the heart of the scientific basis of this unpredictability. Hence, we will now 
make some more detailed remarks about this mathematical structure. 

5. H E L E - S H A W  F R E E - B O U N D A R Y  P R O B L E M S .  
E X P L I C I T  S O L U T I O N S  OBTAINED BY C O M P L E X - V A R I A B L E  

M E T H O D S  

We have already mentioned that Kochina found an explicit solution of the celebrated canonical problem 
of flow under gravity through a rectangular porous dam. This solution is probably the best-known 
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application of the method that she devised to deal with a commonly occurring class of free-boundary 
problems for Laplace's equation, in which there are two independent linear relations between the 
independent variables (x, y) and the potential -p and stream function ~ in each separate segment of 
the flow domain. The key point is that when the physical plane and the complex potential plane are 
mapped onto an auxiliary half-plane, the resulting Riemann-Hilbert problem can be solved in terms 
of Riemann P-functions. This link between-boundary problems and Fuschsian differential equations 
was a prominent feature of Kochina's work throughout her career [3], and it remains an active area of 
research [19]. 

However, the complex-variable method that Kochina and Galin developed to deal with unsteady zero- 
gravity Hele-Shaw flows was much more influential. Again, the key idea involves a conformal mapping 
of the physical (x + iy) plane and the complex potential (--p + i~) plane onto an auxiliary domain, usually 
the unit circle [ ~[ < 1. Because the real part of the complex potential vanishes on the free boundary, 
one of these mappings is trivial, but the mapping off(~, t) from [ ~[ < 1 onto the domain occupied by 
the fluid leads to the problem of finding a univalent conformal mapping satisfying the non-linear 
boundary condition 

( l~f'~ l = ~W(~,t) (5.1) 

in which the right-han d side represents the transformed pressure, which, being a solution or Laplace's 
equation in the known .domain I~[< 1, is completely defined by the driving mechanism imposed 
combined with the condition p = 0 on F. 

It is a remarkable feature of this formulation of the problem that, for simple driving mechanisms 
such as point sources/sinks, exact solutions can be found using many simple maps (polynomials, rational 
and logarithmic functions). The procedure is to assume a specific functional form forf(~, t) with time- 
dependent coefficient - Kochin~'s paper of 1945 [4] gave the limagon examplef(~, t) = aa(t)~ + a2(/)~ 2 
and, on substitution into (5.1), cancellation of extraneous terms is ensured, which leaves precisely as 
many equations as there are unknown coefficients. There is a considerable literature describing solutions 
of this type (in many cases rederivations of solutions published in the Russian literature in the 1950s); 
see the online bibliography at www.maths.ox.ac.uk/-howison/Hele-Shaw/. 

6. MOMENTS OF THE FLUID DOMAIN 

Hele-Shaw flows have a deceptively simple geometric structure, in that the "moments" of the fluid 
domain evolve in a predictable way [20]. To see this, in the simple case where the flow is driven by a 
single point sink of strength Q at the region, we write the pressure field equation in the form 

Ap=-QS(x)8(y) in f~(t) 

For any function L(z), analytic in the domain f2(t), the use of Green's theorem shows that [21, 22] 

d "Z~ ~ L(z)dxdy = ~ L(z)unds = -  ~ L(z)=f--ds = QL(O) 
a [  fl( t)  F(t) i-'(t) o n  

In particular, taking the integrand L(z) = z k for the positive integer k we obtain the infinite set of 
moments Mk(t) (k = 0,1 . . . .  ), which satisfy the relations 

d M k ( t ) - d  S S zkdxdy=QSok 
dt tit f~(t) 

(6.1) 

Thus, all the moments, except the zeroth (k = 0), equal to the domain area, which changes at the 
rate Q, are constants. Indeed, these values of the moments give the solution of the differential equations 
that arise on substituting the expression for the function f into (5.1) and equating coefficients of powers 
of~. 

This result for the moments in the case of a single source/sink caneasily be generalized to the case 
of a system of sources/sinks within f2 [21], or to multipole-type singularities [23]. It also leads immediately 
to a connection with the problem of determining the form of a gravitating body in the case of two space 
dimensions. If we define the Cauchy transform of the domain f2 by 
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dx'dy" 
z-z" 

it is easy to see that O is proportional to the z-derivative of the gravitational potential generated by a 
uniform density in f2. Its Laurent expansion for large I x I has the form Mo/z + M1/z 2 + ..., and, indeed, 
this approach can easily be used to generate multipole solutions of the problem of recovering a domain 
from its moments [24]. 

Generalization of the problem of moments to the case of two fluids. An obvious generalization of 
the Hele-Shaw problem described above is to introduce a second fluid of non-zero viscosity into the 
cell, the free boundary F now being the interface between the two fluid (the Muskat problem). Thus 
the flow domain consists of two regions, f21 and £22, separated by an interface F, and the fluid velocity 
in region ~'~i (i = 1, 2)  is given by H i = -kiVp, where k i are the mobilities, inversely proportional to the 
viscosities. The pressure Pi are again harmonic in ~2i but now the free-boundary conditions have the 
form 

Pl = P2' - klOPl / On = -k2OP2 1 On = o n on r (6.2) 

and express the continuity of the pressure and normal velocity respectively. 
The first of these conditions makes this problem very much harder than the one-phase problem, since 

we no longer have a constant pressure on F. In particular, the complex variable methods that work so 
well for the simpler problem become much less helpful (for a brief description of what can be done 
see [25]), and other theoretical approaches appear difficult. For example, the moment approach 
described above leads to an apparently unstudied generalization of the classical moment problem, as 
we will now show. 

Suppose, for definiteness, that fluid I occupies a simply-connected domain ~1 containing a point 
source/sink of strength Q at the origin, and that fluid 2 occupies an annular region f~2, bounded inside 
by the interface F between the fluids and outside by a second interface F', the region exterior to £2 2 
being at constant (zero) pressure. (The point of this configuration is that it avoids difficulties associated 
with infinite regions and/or fixed boundaries.) Thus, in addition to (6.2) holding on F, we have 

Ap I =-Q6Cx)8(y) in ~l ,  AP2 = 0 in ~2 (6.3) 

P2 = O, -- k2OP2 / On' = v,~ on r '  (6.4) 

Now let L(z) be analytic in fh  and ~"~2, and consider 

I ¼d dy-I I  dxdy 
~1 fl 2 g2 

we have 

OL ds OL , , OL ds I~I(t)=QL(O)+I - P " ~ n  + I  P2-~naS +~ P2~n =QL(O) 
r F" r 

(we have used Green's theorem and boundary conditions (6.4) and (6.2), and we note the sign changes 
due to the fact that if n points out f21 it points into £22). 

It follows that the generalized moment M(t) is constant if L(0) = 0 and changes linearly with t if 
r (0) ,  0. 

7. THE B A I O C C H I  T R A N S F O R M ,  THE S C H W A R Z  F U N C T I O N ,  
AND V A R I A T I O N A L  I N E Q U A L I T I E S  

In Section 3 we introduced the Baiocchi transform u(x,y, t) of the pressure via (3.1), showing that it 
satisfies the free-boundary problem 

~r2u=l ;  u = 3 u / O n = O  o n F  

(in regions crossed by F, and elsewhere by analytic continuation). 
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We can also introduce the Schwarz function [26] of the free boundary, writing F in the form 
z = g(z, t), this is always possible for (piecewise) analytic curves andg(z, t) is analytic in a neighbourhood 
of any smooth point of F. Following [27], since 

4 O2u =1 in ~; Ou Ou .Ou ~z3z -~z = "~x - '  -~y' ~ - g(z, t) = 0 on F 

we have by analytic continuation that 

Ou . bu 1 _ 
- t  oy:" = ~ (z - g(z,  t)) in f~ 7;x 

Since also Ou/Ot = p, we see that the singularities of u, and hence of g(z, t) inside fl must either be 
constant in time or time-integrals of specified singularities ofp. In a similar vein, following [20], the 
Cauchy transform can be recast in the form 

roe(z, t) outside fl 
®(z, ~, t) = ~ + 

[z O~(z, t) inside fl 

where Oe and Oi are analytic inside and outside f2 respectively. Indeed, from he definition of g(z, t), 
where Oe(z, t) - Oi(z, t) =g(z ,  t), from which it is clear that the two approaches are essentially equivalent 
(but note that if the fluid domain is multiply connected, only the Cauchy transform is useful [28]). 

If we additionally specify the constraint u I> 0, then, as mentioned above, u satisfies a well-posed 
variational inequality [29]. Once a one-parameter family u(x, y, t) of such solutions has been found, 
with specified singularities (or boundary values) varying with t, its time derivative is the pressure in a 
Hele-Shaw flow. Conversely, an Hele-Shaw suction flow whose solution exists until all the fluid has been 
removed or, in an infinite domain, for all t, is the time-derivative of such an obstacle problem [30]. The 
blow-up mentioned earlier is associated with negative regions of u(x, y, t) reaching F, and (with some 
exceptions to be discussed later) it cannot occur when the constraint u/> 0 is satisfied. 

We have already mentioned Kochina's realization that receding Hele-Shaw flows without surface 
tension can exhibit finite-time blow-up, a famous example being the lima~on solution [4]. In fact, as 
any zero-surface tension problem is time-reversible, blow-up solutions can, in principle, be generated 
by injecting with a non-smooth free boundary and then reversing the sequence of solutions so obtained. 
This procedure can reveal unexpected features, an example being "waiting time" that can occur when 
injection takes place into an initial domain wit a corner [31]. The analysis of this situation again involves 
the Baiocchi transform of the pressure, and this device is also instrumental in the analysis of allowable 
cusps in injection problems [32]. 

It can be shown [33] that the obstacle problem (for the Baiocchi transform) can have singularities 
in its free boundary of (4n + 1)/2-power type, and no others, and by virtue of the discussion above, it 
is also possible for a Hele-Shaw free boundary to develop such a cusp at one time while remaining smooth 
before and after this time; an example of a 5/2-power cusp is given in [32]. Note that in these examples, 
the Baiocchi transform of the pressure does not breach the constraint u I> 0 near the cusp. 

In case of the Muskat problem, the linear stability analysis of a plane interfaces still predicts 
catastrophic instability when the mobility of the displacing fluid exceeds that of the displaced fluid, it 
is not known how the presence of the second fluid affects the blow-up that commonly occurs in 
contracting single fluid problems. It is possible that the effect of the second fluid on, say, blow-up via 
a 3/2-power cusp, may be quite dramatic, since such a geometry can only occur in the two-fluid case if 
the displacing fluid can be squeezed out of the developing cusp sufficiently rapidly. 

8. E X P O N E N T I A L  ASYMPTOTICS  

The instabilities inherent in Kochina's solutions for Hele-Shaw flows in shrinking regions have given 
a new stimulus to the theory of asymptotic expansions, and more particularly to "asymptotics beyond 
all orders" or "exponential asymptotics" [34]. We have already remarked that the Hele-Shaw model is 
a simple paradigm for the delicate phenomenon of crystal growth, a shrinking (respectively, expanding) 
fluid region being identified with a supercooled (respectively, normal) liquid melt from which the crystal 
grows. It has long been a goal of materials science to understand the thermodynamic and mechanical 
balances that select the crystal shape, and a famous analogous "pattern selection" problem for Hele- 
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Shaw flows arises out of the work of Saffman and Taylor [18] mentioned earlier. Their  theory indicated 
that, with no surface tension effects at the interface, there is a one-parameter family of finger penetrating 
the channel; but their experiments, and many others [18, 35], suggest that when surface tension effects 
are small, the finger of asymptotic width approximately half that of the channel is selected. 

These considerations prompt the question of what is the behaviour of system (2.1), (2.2) when the 
condit ionp = 0 on F is replaced by a regularization such asp = - ~ n  o rp  = ~×, where × is the curvature 
of F (with the appropriate sign) and e is a small positive parameter.  (The Baiocchi transform with the 
constraint u I> 0, and the "smoothed" models listed in Section 3 can also be thought of as regularizations, 
but in a different sense.) 

Twenty years ago this would have been regarded as an unsolved problem in singular perturbation 
theory. For example, in the Saffman-Taylor problem a straightforward expansion in powers of e does 
not lead to a selection principle for the.finger, and indeed it does not suggest that the effect of the 
regularization is any other than a small perturbation of the unregularized solution. However, the new 
methodology (see [34] for an early collection of results and [36] for recent work on the Saffman-Taylor 
problem) has shown how dramatic the effect of the regularization can be, at least for steady states or 
travelling waves. 

The ingenious procedure involves first reformulating the problem as a mixed boundary-value problem 
in a half-space and then as a non-linear integrodifferential equation for the slope of F. Next, the 
independent variable s is complexified and a WKB expansion is carried out in terms of e in order to 
reveal the Stokes lines of the solution as a function of s; these lines are born at the singularities of the 
unregularized solution. (The structure of the solution near these singularities can, by itself, be used to 
find a solvability condition, as shown in [36].) Finally, the only admissible solutions are those whose 
Stokes lines behave in such a way that the relevant fixed boundary and symmetry conditions can be 
satisfied, and this turns out to be the case when the regularization parameter  e takes one of a discrete 
set of values. For the Saffman-Taylor problem, this shows that there is a denumerable infinite set of 
finger widths, whose limit as e ~ 0 is 1/2. 

We are thus led to yet another aspect of the interplay between Kochina's work and the theory of 
functions of complex variable. This is another  story that is far from complete, because there is no 
generally accepted theory of exponential asymptotics for evolution problems, especially those that blow 
up at a finite time t*. Controversy still rages over whether or not unregularized solutions can give useful 
information for times less than t*. One theory [37] proposes that "daughter singularities" can emerge 
from the singularities of the analytic continuation of the unregularized problem, and propagate in such 
a way as to make the regularized solution differ from the unregularized solution by O(1) for times that 
are O(1) before t*, and numerical evidence for this is given in [38]. 

This work was reported at the International Conference "Modern  Approach to Flows in Porous 
• Media" (September 1999) dedicated to the memory of E Ya. Polubarinova-Kochina. 
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